King Fahd University of Petroleum and Minerals College of Computer Science and Engineering

ICS 253 Section 01

Major Exam 2

26 November 2015

Student Name:

Student ID:

Learning Objective	Question	Total Marks	Acquired Marks	Notes
2	1	10		
2&3	2	10		
2&3	3	10		
2&3	4	10		
2	5	10		
2	6	10		
	Total	60		

Notes:

- 1) Write your Student ID on the top of each paper sheet.
- 2) This exam contains six different paper sheets **<u>excluding</u>** this cover page.
- 3) Answer all questions in this exam.
- 4) Exam duration is 60 minutes.

This page is intentionally left blank

Student ID: _____

Question 1

The symmetric difference of two sets A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

a) Using set builder notation show that $A \oplus B = (A \cup B) - (A \cap B)$

b) Show that $A \oplus A = \emptyset$

Question 2

a) Prove that (0,1) and [0,1] have the same cardinality.

b) How many bit string of length 10 contain at least three 1s and at least three 0s? [Show the steps to count the bit strings. A single number will not be accepted as an answer]

Question 3

a) Prove that the derivative of $f(x) = x^n$ equals nx^{n-1} whenever *n* is a positive integer.

c) How many bit string of length 10 either begin with three 0s or end with two 0s? [Show the steps to count the bit strings. A single number will not be accepted as an answer]

Question 4

a) Let *f* be a function from *S* to *T*, where *S* and *T* are nonempty finite sets. Furthermore, let |S| > |T|. What is the least number of elements of *S* that are mapped to the same element of *T*? [Justify your answer]

b) How many ways are there to arrange the letters *a*, *b*, *c*, and *d* such that *a* is not followed immediately by *b*? [Show the steps to count the bit strings. A single number will not be accepted as an answer]

Question 5

Show that among any n + 1 positive integers not exceeding 2n there must be an integer that divides one of the other integers.

Student ID: _____

Question 6

If the set *S* is defined as follows:

- 3 ∈ *S*
- If $x \in S$ and $y \in S$ then $x + y \in S$

Then prove that S is the set of all positive integers that are multiple of 3.